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Abstract

The present study focuses on a novel harmonic balance formulation, which is much easier to implement than the stan-
dard/classical harmonic balance method for complex nonlinear mathematical models and algorithms. Both harmonic bal-
ance approaches are applied to Duffing�s oscillator to demonstrate the advantages and disadvantages of the two
approaches. A fundamental understanding of the difference between these two methods is achieved, and the properties
of each method are analyzed in detail.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The harmonic balance method is a computationally efficient alternative to time marching methods for mod-
eling nonlinear dynamic systems when the response is periodic in time. Such nonlinear dynamic systems range
from models as simple as Duffing�s oscillator to complex models of a complete aircraft configuration where
nonlinearities may exist in both the fluid and the structure, and where flutter onset (Hopf bifurcation) and
limit cycle oscillations (LCOs) are of much interest.

The classical harmonic balance (HB) approach proceeds by first substituting a temporal Fourier series expan-
sion of the solution variables into the governing equations. Next, the equations are expanded, and the terms
associated with each harmonic (i.e. 1, cos(xt), cos(2xt), . . ., cos(NHxt), sin(xt), sin(2xt), . . ., sin(NHxt)) are then
balanced. This yields 2NH + 1 equations for the 2NH + 1 harmonic coefficients where NH is the number of har-
monics used. The classical HB approach, especially when using only the fundamental harmonic (i.e., NH = 1),
which is referred to as the HB1 method in this study, has been well developed and employed successfully to study
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various dynamical systems. For example, Virgin [1] used the HB1 method for the Duffing�s oscillator. The
describing function (DF) method, similar to HB1, was employed by Shen [2] in studying the effects of a nonlinear
structural spring stiffness on airfoil aeroelastic flutter and LCO behavior. The DF method was also used by Price
et al. [3] to predict the nonlinear response of an airfoil with freeplay and cubic nonlinear restoring forces. The
equivalent linearization method, another version of the HB1, was applied by Tang et al. [4] for an airfoil with a
freeplay control surface, and by Zhao and Yang [5] to analyze the limit cycle oscillations of the airfoil. Demon-
strations of the classical HB approach when including second and higher harmonics have been reported by
Donescu et al. [6] for the Duffing�s oscillator, and by Liu and Dowell [7,8] for a nonlinear aeroelastic airfoil
model. This straightforward approach to the harmonic balance formulation is however typically difficult to
implement for high dimensional nonlinear dynamical systems such as the Reynolds averaged Navier–Stokes
equations for a fluid.

Recently, a new formulation of the HB method has been developed by Hall et al. [9,10] for deterministic
dynamical systems, and then further developed by Beran and Pettit [11] for aeroelastic systems subject to para-
metric uncertainties. We denote this approach as the high dimensional harmonic balance (HDHB) method
since it is suitable for high dimensional dynamical systems. The key aspect of the HDHB method is that
instead of working in terms of Fourier coefficient variables as in the conventional HB approach, the dependent
variables are instead cast in the time domain and stored at 2NH + 1 equally spaced sub-time levels over the
period of one cycle of motion. The Fourier and time-domain variables are related to one another via a con-
stant Fourier transformation matrix. Thus one might also refer to this approach as a time domain harmonic
balance (TDHB) method.

Working in terms of time domain sub-time level solution variables avoids the harmonic balancing of the
Fourier coefficient solution variables in the classical HB method. This makes the HDHB method very easy
to formulate within the framework of an existing time marching nonlinear solver. However, the HDHB
method may produce non-physical solutions as well as the physically meaningful ones that we seek. A funda-
mental understanding of the difference between the classical HB and HDHB approaches is needed and this is
the task of the present study.

It should be mentioned that similar to the HDHB method there are some other harmonic balance
approaches: the harmonic balance method (HBM) [12] and the non linear frequency domain method (NLFD)
[13,14]. In these methods, the equations are set up in the frequency domain. The nonlinear terms are obtained
in the time domain by using the FFT and the original differential equations. These approaches have the same
advantage as the HDHB method in that no analytical expression for the nonlinear terms need to be found.
However, in the HDHB method, the equations are derived and the solutions are obtained in the time domain,
while in the HBM/NLFD method, one uses the FFT to convert the displacement from the frequency domain
to the time domain and to convert the nonlinear terms from the time domain to the frequency domain at every
iteration in the nonlinear solving process. This is more cumbersome and computationally intensive. Thus, the
HDHB method is much more computationally efficient as well as more elegant than the HBM/NLFD method.
Therefore, this study focuses on the comparison of the classical HB and the HDHB methods.

Duffing�s oscillator [15] is a simple nonlinear scalar model that is well suited for demonstrating the differ-
ences between the two harmonic balance methods. The governing equation for Duffing�s oscillator can be writ-
ten as
m€xþ d _xþ kxþ ax3 ¼ F sinðxtÞ; ð1Þ

where m, d, k, F and x are the mass, damping, stiffness, external force and excitation frequency of the oscil-
lator, respectively. Defining the natural frequency as x0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, the damping coefficient as f = d/2mx0, and

non-dimensional time as s = x0t, Eq. (1) can be written as,
mx2
0x00 þ 2fx0mx0x0 þ x2

0mxþ ax3 ¼ F sin
x
x0

s

� �
. ð2Þ
Divide both sides of the above equation by x2
0m ¼ k to obtain,
x00 þ 2fx0 þ xþ a
k

x3 ¼ F
k

sin
x
x0

s

� �
ð3Þ
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Defining h ¼
ffiffiffiffiffiffiffiffi
k=a

p
, ~x ¼ x=x0 and the new variable ~x ¼ x=h, Eq. (3) then becomes:
h~x00 þ 2fh~x0 þ h~xþ a
k

h3~x3 ¼ F
k

sinð~xsÞ
Divide both sides of the above equation by h, we then have:
~x00 þ 2f~x0 þ ~xþ ~x3 ¼ ~F sinð~xsÞ ð4Þ

where ~F ¼ F =kh ¼ F

ffiffiffi
a
p

=k
ffiffiffi
k
p

. Eq. (4) is non-dimensionalized, which indicates that for any given f, ~x and ~F , ~x
is a universal function of s.

In order to identify the source of the terms in the nonlinear algebraic systems for the Fourier coefficients or
the sub-time level variables, the general Duffing�s equation (1) is used in Section 2. In Section 3, the non-
dimensional form of the Duffing�s equation (4) is used for an investigation of generic phenomena.
2. Harmonic balance analysis

Solutions periodic in time, and of a unique fundamental frequency, maybe expressed in terms of a Fourier
series. The HB method consists of first substituting the Fourier expansion into the governing equations. One
then integrates R(t)g(t) over one period for g(t) = {1, cos(xt), cos(2xt), . . ., cos(NHxt), sin(xt), sin(2xt), . . .,
sin(NHxt)} where R(t) is the governing equation. This provides 2NH + 1 equations for the 2NH + 1 Fourier
coefficients. For a smooth R(t), by using the orthogonal properties of the sine and cosine functions, this
amounts to collecting terms proportional to cos(nxt), n 2 {0,1, . . .,NH} and sin(nxt), n 2 {1,2, . . .,NH}.

A possible difficulty with the application of the HB technique exists for equations with non-smooth non-
linear terms. This difficulty can however be overcome using the HDHB approach. In this section, the two har-
monic balance approaches are derived for Duffing�s equation, and the difference between approaches is found
in analytical form. Furthermore the source of the difference is also explained. We note that the HDHB method
was developed for governing equations where the use of HB is not possible [9,10], such as discrete computa-
tional fluid dynamic models of the Reynolds averaged Navier–Stokes (RANS) equations. Coherent turbulence
models used in RANS often contain non-smooth functions. The study of Duffing�s equation allows a compar-
ison of HB and HDHB to be made both analytically and numerically.

2.1. The standard harmonic balance method

For the derivation of the standard harmonic balance (HB) method, one begins by considering the solution
of Eq. (1) to be of the form of a truncated Fourier series expansion, i.e.
xðtÞ ¼ x̂0 þ
XNH

n¼1

ðx̂2n�1 cosðnxtÞ þ x̂2n sinðnxtÞÞ ð5Þ
Here x is the fundamental frequency of oscillation, x̂nðn ¼ 0; 1; . . . ;NHÞ are the HB solution Fourier coeffi-
cient variables, and NH is the number of overall harmonics used in the HB truncated Fourier series expansion.
The Fourier expansions of the first and second time derivative terms in Eq. (1) are
_xðtÞ ¼
XNH

n¼1

ð�nxx̂2n�1 sinðnxtÞ þ nxx̂2n cosðnxtÞÞ

€xðtÞ ¼
XNH

n¼1

ð�ðnxÞ2x̂2n�1 cosðnxtÞ � ðnxÞ2x̂2n sinðnxtÞÞ.
ð6Þ
The Fourier expansion of the cubic term in Eq. (1) may be expressed as (retaining NH harmonics)
ðxðtÞÞ3 � r̂0 þ
XNH

n¼1

ðr̂2n�1 cosðnxtÞ þ r̂2n sinðnxtÞÞ ð7Þ
where
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r̂0 ¼
1

2p

Z 2p

0

x̂0 þ
XNH

n¼1

x̂2n�1 cosðntÞ þ x̂2n sinðntÞð Þ
 !3

dt

r̂2n�1 ¼
1

p

Z 2p

0

x̂0 þ
XNH

n¼1

ðx̂2n�1 cosðntÞ þ x̂2n sinðntÞÞ
 !3

cosðntÞdt

r̂2n ¼
1

p

Z 2p

0

x̂0 þ
XNH

n¼1

ðx̂2n�1 cosðntÞ þ x̂2n sinðntÞÞ
 !3

sinðntÞdt

ð8Þ
Substituting the expressions (5)–(8) into Eq. (1) and collecting terms associated with each harmonic cos(nxt)
and sin(nxt) (n = 0,1,2, . . .,NH) yield a system of 2NH + 1 algebraic equations for Fourier coefficients
x̂nðn ¼ 0; 1; 2; . . . ;NHÞ. The resulting algebraic system of equations can be written in vector form to determine
the unknowns, Q̂x
ðmx2A2 þ dxAþ kIÞQ̂x þ aR̂x ¼ F Ĥ ð9Þ

where 8 9 8 9
Q̂x ¼

x̂0

x̂1

x̂2

..

.

x̂2NH

>>>>>>><
>>>>>>>:

>>>>>>>=
>>>>>>>;
ð2NHþ1Þ�1

; R̂x ¼

r̂0

r̂1

r̂2

..

.

r̂2NH

>>>>>>><
>>>>>>>:

>>>>>>>=
>>>>>>>;
ð2NHþ1Þ�1

; Ĥ ¼

0

0

1

..

.

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð2NHþ1Þ�1
and
A ¼

0

J1

J2

. . .

JNH

2
6666664

3
7777775
ð2NHþ1Þ�ð2N Hþ1Þ

with Jn ¼ n
0 1

�1 0

� �
n ¼ 1; 2; . . . ;NH.
Solving system (9) requires analytical expressions for the nonlinear functions r̂iði ¼ 0; 1; 2; . . . ; 2NHÞ in terms
of the variables x̂iði ¼ 0; 1; 2; . . . ; 2N HÞ.

For HB1, i.e. NH = 1, Eq. (9) can be written as
ðk þ aðA2
0 þ

3

2
A2

1ÞÞx̂0 ¼ 0

ðk � mx2Þx̂1 þ dxx̂2 þ að3A2
0 þ

3

4
A2

1Þx̂1 ¼ 0

� dxx̂1 þ ðk � mx2Þx̂2 þ að3A2
0 þ

3

4
A2

1Þx̂2 ¼ F

ð10Þ
where A0 �
ffiffiffiffi
x̂2

0

q
and A1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2

1 þ x̂2
2

q
. For the linear case (a = 0), the solution to Eq. (9) is x̂0 ¼ 0,

x̂1 ¼ � Fdx
ðk�mx2Þ2þðdxÞ2, and x̂2 ¼ F ðk�mx2Þ

ðk�mx2Þ2þðdxÞ2, which turns out to be the exact solution for the steady state motion.

For the nonlinear case, this study focuses on the hardening spring: k > 0 and a > 0. From the first equation
of system (10), x̂0 ¼ 0. An analytical solutions for x̂1 and x̂2 cannot be obtained. However, the amplitude (A1)
frequency (x) relationship is
ððdxÞ2 þ ðk � mx2 þ a
3

4
A2

1Þ
2ÞA2

1 ¼ F 2 ð11Þ
This is a third degree polynomial in A2
1, and thus there are three possible solutions for the amplitude. Real

valued amplitudes are the only solutions which are physically meaningful. More detailed results are presented
in the next section.
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When the nonlinearity is strong, the solution may not be strictly harmonic. Also higher harmonics may sig-
nificantly contribute to the overall solution. Moreover, when many harmonics are included in the analysis the
resulting expression from Eq. (8) may be long and complex.

2.2. The high dimensional harmonic balance method

For a model where the nonlinearity in the governing equations is a simple polynomial function of the solu-
tion variables (e.g. Duffing�s equation (1)), the standard HB approach is typically easy to implement. However,
for models with more complex nonlinearities, it may be very difficult or impossible to implement the standard
HB approach. Furthermore, if the governing model is based upon some existing computational model, when
using the standard HB approach, it is always then necessary to write a separate and different computational
code. The recently developed HDHB approach (e.g. [9,10]) overcomes these difficulties. The HDHB procedure
for Duffing�s oscillator is outlined in the following.

The (2NH + 1) harmonic balance Fourier coefficient solution variables are related to the time domain solu-
tion at 2NH + 1 equally spaced sub-time levels over a period of oscillation via a constant Fourier transforma-
tion matrix. That is
Q̂x ¼ E ~Qx; ð12Þ

where
~Qx ¼

xðt0Þ
xðt1Þ
xðt2Þ

..

.

xðt2NH
Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
;

with ti ¼ i2p
2NHþ1

ði ¼ 0; 1; 2; . . . ; 2N HÞ, and the transform matrix is
E ¼ 2

2N H þ 1

1=2 1=2 ... 1=2

cos t0 cos t1 . . . cos t2NH

sin t0 sin t1 . . . sin t2NH

cos 2t0 cos 2t1 . . . cos 2t2NH

sin 2t0 sin 2t1 . . . sin 2t2NH

..

. ..
. ..

.

cos NHt0 cos NHt1 . . . cos NHt2NH

sin N Ht0 sin NHt1 . . . sin NHt2NH

2
666666666666664

3
777777777777775

.

Furthermore, the time domain solutions at the 2NH + 1 equally spaced sub-time levels can be expressed in
terms of the harmonic balance Fourier coefficients solution using the inverse of the Fourier transformation
matrix, i.e.
~Qx ¼ E�1Q̂x; ð13Þ
where
E�1 ¼

1 cos t0 sin t0 . . . cos NHt0 sin N Ht0

1 cos t1 sin t1 . . . cos NHt1 sin N Ht1

..

. ..
. ..

. ..
. ..

.

1 cos t2NH
sin t2NH

. . . cos N Ht2NH
sin NHt2NH

2
66664

3
77775
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Similarly R̂x ¼ E~Rx and Ĥ ¼ E ~H, where
~Rx ¼

xðt0Þ3

xðt1Þ3

..

.

xðt2NH
Þ3;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

~H ¼

sin t0

sin t1

..

.

sin t2NH

8>>>><
>>>>:

9>>>>=
>>>>;

.

Eq. (9) is then rewritten as
ðmx2A2 þ dxAþ kIÞE ~Qx þ aE~Rx ¼ F E ~H ð14Þ
Multiplying both sides of Eq. (14) by E�1 gives:
ðmx2D2 þ dxDþ kIÞ ~Qx þ a~Rx ¼ F ~H ð15Þ
where D = E�1AE. In this study, the above system is referred as the HDHB solution system.
Solving Eq. (15) does not require any analytical expressions for the Fourier components. Also, it is easy to

implement the HDHB system into an existing time marching code, e.g. a time marching computational fluid
dynamics (CFD) code. The main requirement for implementing the HDHB method is a re-dimensioning of the
primary arrays from N elements to N · (2NH + 1) elements, while the rest of the flow solver remains relatively
unchanged.
2.3. Differences between the HB and HDHB methods

In order to explore the difference between the HB and HDHB methods, Eq. (15) is expressed in terms of
frequency domain variables. From Eq. (12), x(ti) (i = 0,1,2, . . ., 2NH) is the (i + 1)th component of the vector
E�1Q̂x; xðtiÞ ¼ ðE�1Q̂xÞjiþ1. The nonlinear term in Eq. (15) is
~Rx ¼

jE�1Q̂xj1
� �3

jE�1Q̂xj2
� �3

..

.

jE�1Q̂xj2NHþ1

� �3

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
� E�1Q̂x

� �3

ð16Þ
Here a vector�s cubic power is defined as the vector of the cubic power of each component. With (16) and (12),
Eq. (15) becomes
ðmx2D2 þ dxDþ kIÞE�1Q̂x þ aðE�1Q̂xÞ3 ¼ F E�1Ĥ ð17Þ
Multiplying both sides of (17) by E yields the equivalent system of (15) in the frequency domain:
ðmx2A2 þ dxAþ kIÞQ̂x þ aEðE�1Q̂xÞ3 ¼ F Ĥ ð18Þ
From (9) and (18), the difference between the HB and HDHB systems is really the difference between R̂x,
whose elements are defined in (8), and EðE�1Q̂xÞ3. Without loss of generality, denote
EðE�1Q̂xÞ3 � P̂x ¼

p̂0

p̂1

..

.

p̂2NH

8>>>><
>>>>:

9>>>>=
>>>>;

. ð19Þ
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For NH = 1, from (10) or (7) in the HB approach, the Fourier components for the cubic function are
R̂x ¼
ðA2

0 þ 3
2
A2

1Þx̂0

ð3A2
0 þ 3

4
A2

1Þx̂1

ð3A2
0 þ 3

4
A2

1Þx̂2

8><
>:

9>=
>; ð20Þ
From (19) in the HDHB approach, the Fourier components for the cubic function are
P̂x ¼
ðA2

0 þ 3
2
A2

1Þx̂0 þ 1
4
x̂3

1 � 3
4
x̂1x̂2

2

ð3A2
0 þ 3

4
A2

1Þx̂1 þ 3
2

�A
2

1x̂0

ð3A2
0 þ 3

4
A2

1Þx̂2 � 3x̂0x̂1x̂2

8>><
>>:

9>>=
>>; ¼

r̂0 þ 1
4
x̂3

1 � 3
4
x̂1x̂2

2

r̂1 þ 3
2

�A
2

1x̂0

r̂2 � 3x̂0x̂1x̂2

8><
>:

9>=
>; ð21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where �A1 ¼ x̂2

1 � x̂2
2, and r̂iði ¼ 0; 1; 2Þ in (21) is the (i + 1)th component in R̂x in (20). Furthermore, system

(18) in explicit form becomes
kx̂0 þ a A2
0 þ

3

2
A2

1

� �
x̂0 þ

1

4
x̂3

1 �
3

4
x̂1x̂2

2

� �
¼ 0

ðk � mx2Þx̂1 þ dxx̂2 þ a 3A2
0 þ

3

4
A2

1

� �
x̂1 þ

3

2
�A

2

1x̂0

� �
¼ 0

� dxx̂1 þ ðk � mx2Þx̂2 þ a 3A2
0 þ

3

4
A2

1

� �
x̂2 � 3x̂0x̂1x̂2

� �
¼ F

ð22Þ
Comparing (22) with (10), the HDHB1 system (22) contains all the terms that appear in the HB1 system (10)
plus some additional terms.

Similarly, for NH = 2, the Fourier components in the HB method for the cubic function are
R̂x ¼

A2
0x̂0 þ 3

2
A2

1x̂0 þ 3
2
A2

2x̂0 þ 3
4

�A
2

1x̂3 þ 3
2
x̂1x̂2x̂4

3A2
0x̂1 þ 3

4
A2

1x̂1 þ 3
2
A2

2x̂1 þ 3x̂0x̂1x̂3 þ 3x̂0x̂2x̂4

3A2
0x̂2 þ 3

4
A2

1x̂2 þ 3
2
A2

2x̂2 þ 3x̂0x̂1x̂4 � 3x̂0x̂2x̂3

3A2
0x̂3 þ 3

2
A2

1x̂3 þ 3
4
A2

2x̂3 þ 3
2

�A
2

1x̂0

3A2
0x̂4 þ 3

2
A2

1x̂4 þ 3
4
A2

2x̂4 þ 3x̂0x̂1x̂2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð23Þ
while in the HDHB approach, the Fourier components for the cubic function are
P̂x ¼

r̂0 þ 3
4

�A
2

2x̂1 � 3
2
x̂2x̂3x̂4

r̂1 þ 3
4

�A
2

1x̂3 þ 3
2

�A
2

2x̂0 þ 1
4
x̂3

3 � 3
4
x̂3x̂2

4 � 3
2
x̂1x̂2x̂4

r̂2 � 3
4

�A
2

1x̂4 � 1
4
x̂3

4 þ 3
4
x̂2

3x̂4 � 3
2
x̂1x̂2x̂3 � 3x̂0x̂3x̂4

r̂3 þ 1
4
x̂3

1 þ 3
4

�A
2

2x̂1 � 3
4
x̂1x̂2

2 þ 3
2
x̂2x̂3x̂4 þ 3x̂0x̂1x̂3 � 3x̂0x̂2x̂4

r̂4 þ 1
4
x̂3

2 þ 3
4

�A
2

2x̂2 � 3
4
x̂2

1x̂2 � 3
2
x̂1x̂3x̂4 � 3x̂0x̂2x̂3 � 3x̂0x̂1x̂4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð24Þ
where A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2

3 þ x̂2
4

q
, �A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2

3 � x̂2
4

q
, and r̂iði ¼ 0; 1; 2; 3; 4Þ in (24) is the (i + 1)th component in R̂x in (23).

Therefore, again, the HDHB2 system retains all the terms in HB2 system plus some additional terms.
Further study of the HB and HDHB solution systems reveals that the HDHB system always contains more

terms than the HB system when using the same number of harmonics for all higher order harmonic
approximations.

As discussed in the following section, the additional terms in the HDHB system admits more solutions than
the HB system. Therefore, it is interesting and valuable to determine the source of these terms. In the HB
approach, the assumed harmonic motion form is substituted in the differential system (1), and the Fourier
components of each term ðm€x; d _x; kx; ax3 and F sin xtÞ are obtained. Furthermore, the same number of har-
monics are kept in the HB system for each term in the original governing equation. On the other hand, in
the HDHB approach, when the assumed harmonic motion form is substituted in (1), the individual harmonics
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are not specifically obtained. For the linear terms (linear with respect to x : m€x; d _x; kx and F sin xt), the HDHB
method produces the same result as the HB method does as the order of the harmonics does not change after
the linear operators. Therefore, the source of any difference is related to the nonlinear term x3.

To illustrate, consider NH = 1, and a solution of the form
xðtÞ ¼ x̂0 þ x̂1 cos xt þ x̂2 sin xt.
When expanded, the nonlinear term x(t)3 is
ðxðtÞÞ3 ¼ ðx̂0 þ x̂1 cos xt þ x̂2 sin xtÞ3

¼ A2
0 þ

3

4
A2

1

� �
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2

	 

x̂2 sin 3xt ð25Þ
The HB1 method retains the coefficients of the zeroth and the first harmonics, i.e. the coefficients of 1, cosxt

and sinxt, and disregards the higher order harmonics. On the other hand, the HDHB1 system retains every
term in (25), including the harmonics that are higher than the first harmonic, i.e., including the coefficients of
cos2xt, sin2xt, cos3xt and sin3xt. The coefficients of the higher order harmonics associated with 2x and 3x
are absorbed in the HDHB1 system by the transform matrix E: the coefficient of cos2xt appears in p̂1, the
coefficient of sin2xt appears in p̂2, the coefficient of cos3xt appears in p̂0, the coefficient of sin3xt is multiplied
by zero and disappears in P̂x.

Similarly, when NH = 2, the solution form and the nonlinear term become
xðtÞ ¼ x̂0 þ x̂1 cos xt þ x̂2 sin xt þ x̂3 cos 2xt þ x̂4 sin 2xt;
and
ðxðtÞÞ3 ¼ ðx̂0 þ x̂1 cos xt þ x̂2 sin xt þ x̂3 cos 2xt þ x̂4 sin 2xtÞ3

¼ r̂0 þ r̂1 cos xt þ r̂2 sin xt þ r̂3 cos 2xt þ r̂4 sin 2xt
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The coefficients of all harmonics in (26) can be identified in (24): the coefficient of cos3xt is absorbed in p̂0 and p̂3;
the coefficient of sin3xt appears in p̂4 (some of the terms disappear and may not show in P̂x); the coefficient of
cos4xt appears in p̂1; the coefficient of sin4xt appears in p̂2; the coefficient of cos5xt appears in p̂3; the coefficient
of sin5xt appears in p̂4; the coefficient of cos6xt appears in p̂1; and the coefficient of sin6xt appears in p̂2.

Generally, using the ansatz (5), the truncated Fourier expansion for the nonlinear function is used in the
HB approach, i.e. (7) is used in system (9), while the whole Fourier expansion for the nonlinear function is
used in the HDHB approach:
ðxðtÞÞ3 ¼ r̂0 þ
XNH

n¼1

ðr̂2n�1 cos nxt þ r̂2n sin nxtÞ þ
X1

n¼NHþ1

ðr̂2n�1 cos nxt þ r̂2n sin nxtÞ ð27Þ
For sufficiently small amplitudes, the HDHB results are close to the HB results while for large amplitudes or
motions with many dominant high harmonics, the extra terms in the HDHB system may become significant
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and cause significant difference between the HDHB and the HB results for any fixed NH. However, when NH

approaches to infinity, (7) and (27) are essentially identical, therefore, these two approaches are asymptotically
equivalent.

3. Results and discussions

For linear systems, the HB and HDHB approaches are equivalent, however, as shown in the Section 2.3,
when a nonlinear term is present, the results from the HB and HDHB methods are different. In the following
discussion, the universal form (4) of the Duffing�s oscillator is used. For simplification, the ~ is subsequently
omitted in the results to be shown in this section. Without loss of generality, the damping is chosen as f = 0.1.
Depending on the hysteresis branch in the amplitude-frequency relationship curve, the results from the HB
and HDHB approaches vary. The representative cases chosen for illustration in the following discussion cor-
respond to �no hysteresis� (F = 0.025), �small region of hysteresis� (F = 0.25) and �large region of hysteresis�
(F = 1.25).

3.1. Weak nonlinearity resulting in no hysteresis

Shown in Fig. 1 are the computed zeroth ðA0 ¼ jx̂0jÞ and first harmonic ðA1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2

1 þ x̂2
2

q
Þ amplitudes for

the case of F = 0.025 when using the time marching method (e.g., Runge–Kutta scheme) in addition to
results obtained via the standard harmonic balance (HB) and high dimensional harmonic balance (HDHB)
methods using one harmonic. The results for the three different methods can be seen to be essentially iden-
tical. For small external forces when no hysteresis is present in the solution, the zeroth harmonic amplitude
is zero (A0 = 0, i.e. x̂0 ¼ 0), which means (recall Eqs. (10) and (22)) that the HB1 and HDHB1 systems yield
identical results.

3.2. Nonlinearity resulting in a small region of hysteresis

3.2.1. Time marching results
We next consider the case of F = 0.25, which results in a small region of hysteresis in the solution. Shown in

Fig. 2 are time marching solutions for the peak response amplitude as a function of the excitation frequency.
The open circles represent the solution when gradually increasing the frequency from a starting value of 0.05,
and the dots represent the solution when decreasing the frequency from a starting value of 2.5. As can be seen,
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a small region of hysteresis is present between the frequencies of x � 1.270 and x � 1.325. Fig. 2(b) shows a
close-up of the region of hysteresis. From Fig. 2, it can be seen that there is also a small region of slightly
increased peak response amplitude for frequency near x = 0.375. A frequency domain analysis of the time
marching solution reveals that the solution near this frequency of excitation consists of not only a component
corresponding to the fundamental harmonic, but also higher order harmonic components.

3.2.2. Harmonic balance results

For the standard HB method, depending on the starting frequency and initial condition for the Newton–
Raphson (NR) solver, two slightly different sets of results are obtained. Nonetheless, the amplitudes of the
zeroth harmonic A0, and the eventh order harmonics (A2, A4, . . .) of the solution are always zero, which is
in an agreement with the time marching solution.

Similar to the procedure for computing the time marching solution in Fig. 2, an initial excitation frequency
is chosen, low or high (say 0.05 or 2.50), and a solution for Duffing�s equation is computed (in this case we
simply use X = 0 as an initial condition). Next, we either slightly increase the excitation frequency (when start-
ing from a low frequency), or slightly decrease the excitation frequency (when starting from a high frequency),
and use the solution from the previous computation as an initial condition for the HB solution process. A
peak amplitude response similar to Fig. 2 can be constructed from the HB method.

As shown in Eq. (11), the solution of the standard harmonic balance method when using one harmonic
(HB1) is a root of a third order polynomial equation. Three solutions are possible, but it is the purely real
valued solutions for A1 that are physically meaningful. For the low frequency (lower than 1.27), there are
one real root and one pair of conjugate complex roots. But only the real root is a physically meaningful solu-
tion for A1. For the frequencies between 1.27 and 1.325, there are three real roots, and therefore these three
roots are physically meaningful solutions. For the high frequency (higher than 1.325), similar to the case of
low frequency, there are one real root and one pair of conjugate complex roots from Eq. (11). Within the hys-
teresis frequency range x 2 [1.270,1.325], the HB1 method is capable of predicting all three of the possible
solution amplitudes. The solution obtained depends on the chosen initial condition.

The solution determination process when using more than one harmonic for the standard harmonic balance
method follows the same procedure as when using just one harmonic. Solutions from lower number of har-
monic analysis can be used as initial conditions. The higher harmonic components are simply set to zero
for the initial condition. We again note that the unstable branch of the solution to Duffing�s equation cannot
be predicted using conventional time marching methods. Of course, one could find the unstable branch by
using other time marching methods, e.g. the shooting with arc-length continuation method [16]. Fig. 3 shows
0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Frequency, ω Frequency, ω

Pe
ak

 a
m

pl
itu

de
, A

 

Pe
ak

 a
m

pl
itu

de
, A

 

a

1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

b

Fig. 2. Time marching results for F = 0.25. (a) For excitation frequency from 0 to 2.5. (b) A zoom-in picture of (a) for the hysteresis
phenomenon. Open circle: increasing x from 0.05; dot: decreasing x from 2.50.



308 L. Liu et al. / Journal of Computational Physics 215 (2006) 298–320
computed Duffing�s equation solutions when using the standard harmonic balance method with one (HB1)
and three harmonics (HB3). The results can be seen to be in excellent agreement with the time marching solu-
tions. The one harmonic standard harmonic balance solution matches the time marching solution very well
except for excitation frequencies near x = 0.375 where there is a slight increase in the solution peak amplitude.
The HB3 solutions can be seen to further improve the solution accuracy by being able to model the region of
slightly increased peak amplitude.

3.2.3. High dimensional harmonic balance results

We now discuss solutions computed via the high dimensional harmonic balance method (HDHB). We first
note that all HDHB solutions are obtained using a Newton–Raphson (NR) procedure for Eq. (15). Thus an
initial condition as the starting solution must be chosen. In generating the solution results shown in Fig. 2, for
example, we sweep over the frequency range of interest. The HDHB method can yield different results depend-
ing on whether the solutions are obtained by an increasing or decreasing frequency sweep.

Figs. 4–6 show HDHB solutions for Duffing�s equation when using one (HDHB1), two (HDHB2), and
three harmonics (HDHB3), respectively, for the case where F = 0.25. Shown in the figures are the amplitudes
for each harmonic used in each HDHB method, i.e. the zeroth and first harmonics for the HDHB1 method
(Fig. 4), the zeroth, first, and second harmonics for HDHB2 method (Fig. 5), and the zeroth, first, second, and
third harmonics for the HDHB3 method (Fig. 6). As mentioned previously, the high dimensional harmonic
balance method has the ability to produce non-physical solutions. Whether or not the non-physical solutions
are found depends on the initial condition solution chosen for the Newton–Raphson (NR) solver that is used
to determine the HDHB solutions.

In Fig. 4, the HDHB solution results for the zeroth (A0) and first (A1) harmonic amplitudes are plotted as a
function of the excitation frequency. Depending on whether one starts at an excitation frequency lower than
the resonant frequency, or higher than the resonant frequency, two possible solution curves for each har-
monic are possible. The pluses and stars shown in Fig. 4 are the computed zeroth and first harmonic ampli-
tudes when starting at an excitation frequency of x = 0.05, and gradually increasing to a frequency of
x = 2.50, at an incremental frequency step of x = 0.05. The squares and circles shown in Fig. 4 are the com-
puted zeroth and first harmonic amplitudes when starting at an excitation frequency of x = 2.50, and grad-
ually decreasing to a frequency of x = 0.05, also at an incremental frequency step of x = 0.05. As can be seen,
when computing the HDHB1 solutions for increasing excitation frequencies, up to a frequency of approxi-
mately x = 1.30, the HDHB1 solution matches well the standard harmonic balance solution for both the
zeroth and first harmonic components. However, beyond this frequency, the HDHB1 method produces
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Fig. 3. HB results when one and three harmonics are included, for F = 0.25. Dash line: one harmonic; solid line: three harmonics.
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non-physical solutions as can be seen from the non-zero zeroth harmonic component and the further increas-
ing of the first harmonic component.

The non-physical solution phenomenon can be seen more clearly in Fig. 5 for the HDHB2 results. In
Fig. 5(a) and (b), the open circles, stars and pluses denote the HDHB2 results for the zeroth (A0), first (A1)
and second harmonic amplitudes (A2), respectively. Fig. 5(a) is for the results obtained by increasing the exci-
tation frequency from x = 0.05, while Fig. 5(b) is for the results by decreasing the frequency from x = 2.50.
There is an abrupt change in the amplitude responses near x = 1.325 in Fig. 5(a) and near x = 1.270 in
Fig. 5(b). For the HDHB2 result found by increasing the frequency, A2 and A0 are near zero and A1 matches
HB1 result before the abrupt change. After the abrupt change, the first harmonic amplitude A1 drops down
slightly, while the zeroth and second harmonic amplitudes, A0 and A2, jump up. In particular, the value of A2

is almost three times of A1. These results are not physically meaningful solutions. The result found by decreas-
ing the frequency matches well with the corresponding HB1 result with A0 and A2 near zero before and after
the abrupt change.

For the results obtained by increasing the excitation frequency, the higher order HDHB analysis improves
the amplitude response before the abrupt change. However, the non-physical response result after the abrupt
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change is not improved and closer observation reveals that the result becomes even worse. Including more har-
monics in the HDHB system improves the results obtained by decreasing the frequency, including the jump
from low amplitudes to high amplitudes. Taking the HDHB3 result shown in Fig. 6 as an example, the result
obtained by increasing the frequency matches the HB result well before the abrupt change (Fig. 6(a)). After the
abrupt change, the amplitude of the third harmonic A3 becomes four times that of A2, A2 is double that of A1

and A0 < 0 is nonzero. With large values in the amplitudes of the high harmonics, the Fourier series is diver-
gent and these are non-physical solutions. The result found by decreasing the frequency is in an excellent
agreement with the HB result (Fig. 6(b)).

Further insight can be obtained by comparing the HDHB results with the HB results for the peak amplitude
responses as displayed in Fig. 7. The stars are for the HDHB results found by increasing the frequency, the open
circles are for the HDHB results found by decreasing the frequency, while the solid lines are the HB results. To
focus on the upper and lower branches of the amplitude-frequency curve, the non-physical solutions are not
included in this figure. In Fig. 7(a), the HDHB1 and HB1 results are in excellent agreement for small and large
values of frequency. A discrepancy between the HDHB1 and HB1 results is evident for x 2 [1.00, 1.380], and
the two end points of the hysteresis are not clearly detected in the HDHB1 result. An improvement is seen in the
HDHB2 result in Fig. 7(b), but the slight increase in the peak response amplitude near x = 0.375 is not pre-
dicted there. The HDHB3 result in Fig. 7(c) is identical to the HB3 result except for the unstable hysteresis
branch that cannot be predicted in the HDHB system. The HDHB results with more harmonics are identical
to the result in Fig. 7(c). By contrast the amplitudes of the higher harmonics for the non-physical solutions, i.e.
the solutions found by increasing the frequency after the abrupt change near x = 1.375, become very large.
These are not shown in Fig. 7. Further discussion about the non-physical solutions is presented in a later Sec-
tion 3.4, including a rational way to distinguish between physical and non-physical solutions. The encouraging
conclusion is that the HDHB method does accurately predict the physically correct solutions and that any
non-physical solutions can be identified by the non-convergence of the Fourier series.

3.3. Strong nonlinearity with a large region of hysteresis

A large external force causes a great hysteresis. For F = 1.25, the region of the hysteresis is from x = 1.75
to x = 2.40, as shown in Fig. 8 for the time marching results and the HB results.

3.3.1. Time marching results

The time marching solutions for the peak response amplitude are shown in Fig. 8 as dots. The results are
obtained by either gradually increasing the excitation frequency from 0.05 or gradually decreasing the



Fig. 7. The HDHB results with various number of harmonics, for F = 0.25, in comparison with the HB results. (a) One harmonic. (b) Two
harmonics. (c) Three harmonics. Star: increasing x from 0.05; open circle: decreasing x from 2.4; solid line in (a) and (b): HB result with
one harmonic; solid line in (c): HB result with three harmonics.
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frequency from 2.80, while the previous oscillations are used as the initial condition in the solution process.
When the frequency is increased, the motion amplitude increases gradually, but drops down rapidly from
2.50 to 0.25 near x = 2.40. On the other hand, when the frequency is decreased, the motion amplitude
increases gradually, but jumps up from 0.50 to 2.00 near x = 1.75. Furthermore, when the frequency is near
x = 0.50, the phenomenon of the slight increase in the peak amplitude becomes more evident and occurs more
frequently than is the case when F = 0.25. Closer observation reveals that there are five to seven detectable
harmonics in the motions near x = 0.50.

3.3.2. Harmonic balance results

The HB results in Fig. 8 are obtained by solving the simplified HB1 system for all possible solutions and
then using lower order HB results as initial points in the NR process for higher order HB results. The HB
solutions for the zeroth and eventh harmonics amplitudes are nearly zero. Typical results for HB1, HB3
and HB5, are presented in Fig. 8. The HB5 result is in an excellent agreement with the time marching result.
Higher order HB results do not improve much upon the HB5 result as the amplitudes for the higher harmonics
are nearly zero. The unstable and lower branches of the HB1, HB3 and HB5 coincide, and the prediction for
the lower branch matches well with the time marching result. For the upper branch when x is from 1.0 to 2.5,
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the HB1 result is slightly lower than the time marching result, while the HB3 and HB5 results are in an excel-
lent agreement with the time marching results. The significant improvement of higher order HB upon lower
order HB results is seen at the slight increase of the peak response amplitude near x = 0.50 where many high
harmonics are present. The HB1 curve for the peak response amplitude increases smoothly and no slight
increase occurs near x = 0.50. The HB3 curve detects one local peak amplitude at x = 0.50, and the HB5
curve captures two such peaks. The chosen increment for the frequency in Fig. 8 is Dx = 0.05. With a finer
Dx, more local peaks may be detected.

3.3.3. High dimensional harmonic balance results

Some typical results for the HDHB with different numbers of harmonics are shown in Figs. 9–11. The
results are obtained by increasing/decreasing the frequency and using previous results as the initial starting
points in the solution process.

Fig. 9 shows the HDHB results when one harmonic is included in the analysis, in comparison with the HB1
results. The results by increasing the frequency are denoted by stars, and the results by decreasing the fre-
quency are denoted by open circles. An interesting observation is that there is no rapid change in the motion
amplitudes when the frequency is increased gradually, while the jump (near x = 1.75) from low amplitudes to
high amplitudes is captured by the solution response when the frequency is decreased.
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The HDHB2 results, i.e. the HDHB results when two harmonics are included in the analysis, are shown in
Fig. 10, in comparison with the HB1 results denoted by a solid line. Fig. 10(a) is for the results obtained by
increasing the frequency, while Fig. 10(b) is for the results obtained by decreasing the frequency. In both fig-
ures, the amplitudes of the zeroth A0, the first A1 and the second A2 harmonic are denoted by open circles,
stars and pluses respectively. The HDHB results found by increasing the frequency match the upper branch
of the HB1 result well for frequencies up to 0.75, after which the HDHB solutions deviate from the HB1
motions. The HDHB results found by decreasing the frequency match the lower and upper branches of the
HB1 results well except for frequencies between 0.75 and 1.75, when the HDHB solutions are larger than
the HB1 solutions. These HDHB2 solutions are non-physical solutions because the amplitude of the second
harmonic is much larger than that of the first harmonic. The increment used for the frequency in Fig. 10 is
0.05, which is sufficiently small for the cases discussed so far. Decreasing the frequency increment to 0.0001
does not improve the HDHB2 results.

When three and four harmonics are included in the HDHB analysis, the NR solver never converges for
frequencies near 0.75, therefore, a complete set of the HDHB3 and HDHB4 results cannot be obtained. This
phenomenon occurs when the frequency is increased from 0.05 or decreased from 2.80.

However, the HDHB results are improved and the above phenomenon disappears when more harmonics
are included in the analysis. If a sufficiently small Dx is used, the NR solver converges when more than five
harmonics are included in the HDHB system. Some examples are: the NR converges for HDHB5 with Dx <
0.001, while it converges for HDHB6, HDHB7 and HDHB8 with Dx < 0.025. The higher order HDHB results
are in good agreement with the upper and lower branches of the lower order HB results. For example, the
HDHB5 and HDHB6 results are close to the HB3 results; while the HDHB7 and HDHB8 solutions are close
to the HB5 solutions. A typical result is shown in Fig. 11 for the HDHB8 solutions, in comparison with the
HB5 result. The accumulated amplitude is used in this figure. The HDHB8 result obtained by increasing the
frequency follows the upper branch of the HB5 result till x = 2.45, after which the HDHB solution jumps up
to 20 and never drops down to the lower branch. The HDHB8 result obtained by decreasing the frequency is
identical to the HB5 result, including the lower and upper branches, and the jump near x = 1.75. The encour-
aging conclusion is that with a large enough number of harmonics, HDHB works well even when siginificant
amounts of mysteresis occur.

3.3.4. Unstable solutions

It should be noted that the HDHB results presented in the above are not capable of predicting the solutions
between the upper and lower branches of the hysteresis, e.g. the peak amplitude 2.0 for the frequency 2.1,
while these unstable solutions are captured by the HB results. It should also be noted that the procedure used
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Fig. 10. HDHB results with two harmonics, Dx = 0.05, F = 1.25. (a) Increasing x from 0.05. (b) Decreasing x from 2.75. Plus: A2; star:
A1; open circle: A0; solid line: HB result with one harmonic.
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Fig. 11. HDHB results with eight harmonics, Dx = 0.0005, F = 1.25. Star: increasing x from 0.05; open circle: decreasing x from 2.75;
solid line: HB result with five harmonics.
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to determine the HDHB solutions is either to increase or decrease the frequency while using the previous
results as the initial condition in the NR solver. This solution process usually misses the unstable branch of
the hysteresis. For example, using this procedure for the HB system one also cannot detect the unstable
branch. However, using an alternate approach in solving the HDHB system does provide the results for
the unstable branch, as described next.

For the results shown before, the force F and frequency x are given, and the amplitudes are computed from
the HDHB systems. Another way to solve the system is to fix the force F, prescribe A1 and solve the system for
x and other amplitudes, e.g. A0 and A2. Fig. 12 is for the HDHB1 result obtained by increasing A1 and using
the previous result as initial guess in the NR solver. If the first prescribed A1 is near 0.9, the HDHB1 prediction
follows the upper branch of the response curve. If the first prescribed A1 is near 0.1, the HDHB1 prediction
follows the lower branch of the response curve, then continuously follows the unstable branch. Both curves do
not detect any abrupt change near x = 2.45 and increase gradually as the value of A1 increases. In the above
procedure, the unstable branch of the hysteresis is captured in the HDHB system, while the two end points of
the hysteresis cannot be detected as there is no abrupt change in the predicted curves.
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Fig. 12. HDHB results with one harmonic, F = 1.25. Star: increasing A1 from 0.76; open circle: increasing A1 from 0.15; solid line: HB
result with one harmonic.
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3.4. Non-physical solutions

Generally speaking, the HDHB method provides more solutions than the HB method and the time march-
ing scheme. Most (perhaps all) of the additional solutions are non-physical solutions. This subsection presents
a further investigation on these solutions.

From the preceding discussion, the HDHB peak amplitude solutions obtained by increasing the frequency
never drop down to the small amplitude motions, instead the solutions jump up and keep increasing as the
frequency is increased. The HDHB predicted motions after the jump are non-physical solutions.

These non-physical solutions can be identified by the non-convergence of the Fourier series. For example,
from Section 3.2, the multi-solutions including non-physical solutions occur for the external frequencies
beyond the hysteresis interval, i.e. x > 1.375. Using different initial guesses in the N-R solver, one may obtain
the physical solution with a small peak amplitude and the non-physical solutions with large peak amplitudes.
For x = 1.4, a physical solution is obtained and shown in Table 1 when the initial guess is taken to be zero; a
non-physical solution is obtained and shown in Table 2 when the initial guess is taken to be 10. The two tables
display the solutions for the amplitudes of the harmonics for harmonic numbers from 1 to 5. In both tables,
for the purpuse of simplification, we use the notation of C(n) for the coefficient of cos(nxt) and S(n) for the
coefficient of sin(nxt). From the first row of data in Table 1, as the number of harmonics increases, it is seen
that the coefficients of cos(xt) and sin(xt) converge to �0.077527 and �0.25141, respectively. The amplitude
of the second harmonic approaches zero when the number of harmonics becomes large, and so does the ampli-
tude of the fourth harmonic. The coefficients of cos(3xt) and sin(3xt) are fixed at 2.2 · 10�4 and 1.6 · 10�4,
respectively. Therefore, it is reasonable to conclude that the solution of the motion converges to
Table
The co

C(1)
S(1)

C(2)
S(2)

C(3)
S(3)

C(4)
S(4)

C(5)
S(5)
xðtÞ ¼ �0:077527 cosð1:4tÞ � 0:25141 sinð1:4tÞ þ 2:2� 10�4 cosð4:2tÞ þ 1:6� 10�4 sinð4:2tÞ þ ðh.o.t.Þ.
ð28Þ
The Fourier series for the above motion converges since the amplitude of the harmonic decreases as the order
of harmonic increases. The peak amplitude of the above motion converges to 0.2 as the number of harmonics
approaches infinity. From Table 2, on the other hand, there is no convergence in the harmonic amplitudes.
From the rows of data in the table, it is seen that there is no obvious convergence for the coefficients of
cos(nxt) or sin(nxt). From the columns, it is seen that the harmonic amplitude increases as the order of har-
monic increases, indicating that the Fourier series diverges, e.g., in column NH = 5, S(1) < S(2) < S(3)
< S(4) < S(5). Furthermore, the peak amplitude of the solution increases as the number of harmonics in-
creases. This is further explored in the following discussion.

The amplitudes for the motions near the jump displayed in Fig. 13(a) are from the HDHB method when
various number of harmonics are included in the analysis. Before the jump, the results from the HDHB
method are identical to the results from the HB method and the time marching scheme; after the jump, the
more harmonics included in the HDHB system, the larger the motions amplitudes become. The relationship
between the number of harmonics and the amplitude of the motion right after the jump are shown in
1
nvergence of a physical solution

NH = 1 NH = 2 NH = 3 NH = 4 NH = 5

�7.7174 · 10�2 �7.7538 · 10�2 �7.7527 · 10�2 �7.7527 · 10�2 �7.7527 · 10�2

�2.5120 · 10�1 �2.5144 · 10�1 �2.5141 · 10�1 �2.5141 · 10�1 �2.5141 · 10�1

4.8968 · 10�4 �2.1008 · 10�6 5.1544 · 10�9 �5.7242 · 10�12

4.6208 · 10�4 2.2565 · 10�7 2.7321 · 10�9 �1.1988 · 10�11

2.2336 · 10�4 2.2336 · 10�4 2.2336 · 10�4

1.6038 · 10�4 1.6038 · 10�4 1.6038 · 10�4

�4.7110 · 10�7 8.4266 · 10�10

2.8979 · 10�8 5.4799 · 10�10

�2.9823 · 10�7

�1.4280 · 10�9



Table 2
The non-convergence of a non-physical solution

NH = 1 NH = 2 NH = 3 NH = 4 NH = 5

C(1) �0.8898 �0.5219 �0.6433 0.3630 0.6283
S(1) 0.9126 �0.5082 0.2570 �0.5584 0.2105

C(2) �0.6545 �0.9054 �0.4125 0.6760
S(2) �3.2173 0.9281 �0.8669 0.4944

C(3) �1.4560 �1.8470 0.7581
S(3) 4.9458 �0.1423 1.0074

C(4) �3.7511 0.8730
S(4) 5.8848 2.2594

C(5) 0.9609
S(5) 8.7322
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Fig. 13(b), where the reciprocal of the peak amplitude, 1/A, is plotted versus the reciprocal of the number of
harmonics retained in the computation, 1/NH. This is so the asymptotic behavior is more readily observed, i.e.
A!1 or 1/A! 0 as NH!1 or 1/NH! 0. The time marching and HB results for the amplitude at the
turning point x = 1.315 is near A = 0.95 or 1/A � 1.0. The amplitude predicted from the HDHB system when
one harmonic is included is not far away from 0.95, while the amplitude from the HDHB system when many
harmonics are included increases dramatically as the number of the harmonics increases. More higher order
HDHB results are included in Fig. 13(b), e.g. the results when 20 harmonics and 40 harmonics are included.
This figure shows that the amplitude of the non-physical solutions are pushed away to infinity when sufficient
harmonics are included in the HDHB analysis. The results for case F = 1.25 are similar to those of Fig. 13,
which are for case F = 0.25.

Fig. 12 shows that the unstable branch of the hysteresis can be captured by the HDHB analysis. In addi-
tion, in the hysteresis region, various initial starting points in the NR iteration may lead to results other than
those from the HB prediction. These additional solutions are also non-physical solutions. In order to capture
these HDHB solutions, another procedure is employed to solve the nonlinear HDHB system.

The results in Figs. 14–16 and the ‘‘cross’’ in Fig. 17 are obtained by the following procedure: fix the value
of the frequency, prescribe the amplitude of the first harmonic A1, and solve the system for the external force F
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Fig. 13. The HDHB solution amplitudes at the turning points for various numbers of harmonics NH, F = 0.25: (a) Peak amplitude versus
the frequency. Dot: NH = 1; star: NH = 2; open circle: NH = 3; plus: NH = 4; open square: NH = 5; open triangle: NH = 6. (b) The
reciprocal of amplitude versus the reciprocal of the number of harmonics. Solid line: the amplitude value at the turning point from the
marching and HB methods; dot: results for HDHB with various number of harmonics.
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Fig. 14. HB results with one harmonic for various frequency. Dash line: x = 0.5; dot line: x = 1; dash dot line: x = 1.5; solid line: x = 2;
open circle: x = 2.5.
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and the other amplitudes. In this way, the HB1 result is easy to obtain when the simplified Eq. (11) is used. For
a prescribed A1, there is a unique solution for F, which is calculated by (11). The HB1 results for various x are
reported in Fig. 14. From this figure of the amplitude-force relationship, for large driving frequency (x P 3),
multi-solutions of the response amplitudes exist for certain external forces, i.e. the hysteresis phenomenon
occurs. For example, when x = 2.50, the amplitude increases when the force increases gradually, but then
at F near 22.5, A1 jumps up from 1.5 to 3. Conversely, A1 decreases when F decreases gradually, but then
at F near 1.25, A1 drops dramatically from 2.5 to 0.25. Furthermore, the larger the driving frequency is,
the larger the region of hysteresis is.

The HDHB system becomes easy to solve when the frequency is given and the amplitude of the first har-
monic is prescribed. A Maple program is able to obtain all possible solutions from the HDHB1 system, and
the results are displayed in Fig. 15, in comparison with the the corresponding HB1 results. For small frequen-
cies, the HDHB1 results are close to the HB1 results. The discrepancy between the HDHB1 and HB1 results
becomes significant when the hysteresis occurs, e.g. x = 1.5. Unlike the HB1 result where the solution for
the force F is unique for a prescribed amplitude of the first harmonic A1, the HDHB1 solutions for F can
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Fig. 15. The HDHB results with one harmonic, in comparison with the corresponding HB results. Dash line: x = 0.5; dot line: x = 1;
dash dot line: x = 1.5; solid line: HDHB results.



Fig. 16. Comparison of the HDHB and HB results with one harmonic. (a) For x = 2.0. (b) For x = 2.5. Dot: HDHB results; solid line:
HB results.
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be multiple valued. The HDHB1 curve for x = 1.5 is twisted as a small loop near the small hysteresis region
predicted by the HB1 system. The HDHB1 results are identical to the HB1 results for small amplitudes
(A1 6 1.5). This phenomenon is further verified in Fig. 16 for x = 2 and x = 2.5.

Fig. 16(a) presents the HDHB1 result for x = 2, in comparison with the HB1 result. For A1 between 1.5
and 2.5, there are many solutions for F. In the hysteresis region, for F between 3 and 9, there are as many
as nine different response amplitudes for a fixed force. Among these solutions, two are on the lower and unsta-
ble branches of the HB1 result, and one is close to the upper branch of the HB1 curve. The turning point from
the upper branch to the lower branch cannot be detected in the HDHB1 curve, while the lower and unstable
branches of the HB1 result are predicted accurately in the HDHB1 approach.

A similar phenomenon can be found in Fig. 16(b) for the HDHB1 result for x = 2.5. In the hysteresis
region for F between 1.25 and 22.5, there are also as many as nine solutions, among which three match well
with the HB1 solutions. The lower branch, the turning point from the lower to the upper branches and the
unstable branch are predicted in the HDHB1 with a fairly good accuracy.

However, the branch in the HDHB1 result that is close to the upper branch of the HB1 result cannot be
captured by using the procedures in Sections 3.2 and 3.3. In fact, after the jump, the motion jumps up to
the top branches of the HDHB1 curves in Fig. 16.
Fig. 17. Non-physical solutions of HDHB results with one harmonic, in comparison with the HB result with one harmonic. (a) F = 0.25.
(b) F = 1.25. Star: increasing x from 0.05; open circle: decreasing x from 2.75; cross: cross plot from Figs. 14–16; solid line: HB result.
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Fig. 18. Non-physical solutions from higher order HDHB systems for F = 1.25. Star and cross: HDHB results with one harmonic;
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For large excitation frequencies, besides the solutions that are near the HB1 solutions, there are additional
solutions from the HDHB1 system. To further investigate these additional solutions, the HDHB results in
Fig. 16 are added into the figures of amplitude versus frequency by cross plotting. Fig. 17(a) shows that
the additional solutions in the amplitude versus the frequency plot for F = 0.25, and Fig. 17(b) is for
F = 1.25. From these two figures, the additional solutions are clustered near the upper branch. These solutions
start to appear when the hysteresis starts (x = 1.25 in Fig. 17(a) and x = 1.75 in Fig. 17(b)), and they remain
for larger frequencies, never to disappear.

In order to further investigate the non-physical solutions from the higher order HDHB systems, various
initial conditions are used for the NR solver. The results from HDHB4 and HDHB8 are chosen to display
in Fig. 18 together with the HDHB1 result from Fig. 17(a). The vertical axis is for the peak amplitude, i.e.
the highest peak in the solution motion. The diamonds are the HDHB4 results found by increasing the fre-
quency and using the previous result as the initial condition for the NR solver. Similarly, the open circles
are the HDHB8 results found by increasing the frequency. Various non-physical solutions are further inves-
tigated for x = 2. From the HDHB4 system, various initial conditions are used in the NR iteration, and seven
distinct solutions are obtained shown as triangles in Fig. 18. A random number generator is used for the initial
condition, and the values vary from �10 to 10. Thousands of sets of random initial values are used to generate
the results shown in Fig. 18. The probability for converging to the solution with the largest peak near 3 is close
to 45%, and the probability for converging to the solution on the upper branch near 2 is about 40%. The other
solutions have a much smaller probability. The solution on the lower branch is very hard to capture if the
initial condition values are randomly chosen. Furthermore, when the initial guess for the NR is near zero,
the NR procedure may not converge. The HDHB8 results shown as dots in the figure show the same phenom-
enon. There are 18 detected distinct solutions near the solution on the upper branch, ranging from 3 to 9. The
probability for the solution on the lower branch is essentially zero, the highest solution (near 9) has the largest
probability of 45%, and the second largest probability 40% occurs for the solution on the upper branch. This
phenomenon remains for other frequencies and higher order HDHB systems. This demonstrates that the non-
physical solutions are pushed toward infinity in the higher order HDHB systems.

4. Conclusion

It is demonstrated using the Duffing�s oscillator as a prototypical system that the difference between the HB
and HDHB systems are from the nonlinear terms in the original system. From the analytical expressions
derived for the HB and HDHB systems, it is shown that there are additional terms in the HDHB system.
The advantages and disadvantages of both HB and HDHB methods, as drawn from the numerical simulations
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in this study, are summarized as follows. The HB results provide high accuracy. There are no non-physical
solutions (divergent Fourier series) found from the HB analysis. The number of harmonics retained in the
HB procedure usually is smaller, compared to that included in the HDHB method for the same accuracy
of the results. However, when many high harmonics are included in the HB method, the analytical HB system
becomes extremely complex and time consuming. For the HDHB method, accurate results can be obtained for
all physically meaningfully solutions by using a large number of the harmonics in the analysis. However, there
are non-physical solutions in the HDHB method as well, in particular, for the motions near/in the hysteresis
region. These non-physical solutions may be identified by the non-convergence of the Fourier series. On the
other hand, the HDHB system is easy to derive and implement into a computer program regardless of the
number of harmonics included in the analysis and non-smooth nonlinearities may be treated in a straightfor-
ward manner. For small to moderate amplitude motions, the HDHB and HB results are close to each other.
For larger motions, especially those near the hysteresis region, the discrepancy between the HDHB and HB
results may become significant for a fixed number of harmonics. The result from the classical HB approach is
more accurate than the HDHB approach with the same number of harmonics included in the analysis. In
order to obtain the same order accuracy from the HDHB method, almost twice the number of harmonics must
be retained in the analysis compared to those needed in the HB analysis.
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